Preparation of sub 3 nm copper nanoparticles by microwave irradiation in the presence of triethylene tetramin.


The preparation of sub 3 nm copper nanoparticles (CuNPs) in ethylene glycol (EG) using triethylene tetramine (TETA) as chelating and reducing agents via a rapid microwave (MW) irradiation is reported. The sub 3 nm CuNPs after MW irradiation are clearly seen from the electronic micrographs. The firm chelation of Cu2+ by TETA is illustrated by the dark blue color of Cu2+/TETA/EG solution and the redox reaction is confirmed by the appearance of red color of the mixtures. The optimal mole ratio of TETA/Cu 2+ is found to be 2.5/1 for preparing sub 3 nm CuNPs under the MW irradiation, operated at 800 W for 1 min. The plasmonic absorption λ max demonstrated in UV-vis spectra are found to close to 200 nm for sub 3 nm CuNPs, comparing to 500 ∼ 600 nm for regular, larger CuNPs. The extremely low Tm around 30 °C and the fusion/recrystallization sequence of sub 3 nm CuNPs can be directly measured by their differential scanning calorimetry thermograms.


    0 Figures and Tables

      Download Full PDF Version (Non-Commercial Use)